A unified model for Sierpinski networks with scale-free scaling and small-world effect

نویسندگان

  • Jihong Guan
  • Yuewen Wu
  • Zhongzhi Zhang
  • Shuigeng Zhou
  • Yonghui Wu
چکیده

In this paper, we propose an evolving Sierpinski gasket, based on which we establish a model of evolutionary Sierpinski networks (ESNs) that unifies deterministic Sierpinski network [Eur. Phys. J. B 60, 259 (2007)] and random Sierpinski network [Eur. Phys. J. B 65, 141 (2008)] to the same framework. We suggest an iterative algorithm generating the ESNs. On the basis of the algorithm, some relevant properties of presented networks are calculated or predicted analytically. Analytical solution shows that the networks under consideration follow a power-law degree distribution, with the distribution exponent continuously tuned in a wide range. The obtained accurate expression of clustering coefficient, together with the prediction of average path length reveals that the ESNs possess small-world effect. All our theoretical results are successfully contrasted by numerical simulations. Moreover, the evolutionary prisoner’s dilemma game is also studied on some limitations of the ESNs, i.e., deterministic Sierpinski network and random Sierpinski network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation

Many real networks share three generic properties: they are scale-free, display a small-world effect, and show a power-law strength-degree correlation. In this paper, we propose a type of deterministically growing networks called Sierpinski networks, which are induced by the famous Sierpinski fractals and constructed in a simple iterative way. We derive analytical expressions for degree distrib...

متن کامل

همگام‌سازی در مدل کوراموتو روی شبکه‌های پیچیده با توزیع فرکانس ذاتی دوقله‌ای

In this work, we study the Kuramoto model on scale-free, random and small-world networks with bimodal intrinsic frequency distributions. We consider two models: in one of them, the coupling constant of the ith oscillator is independent of the number of oscillators with which the oscillator interacts, and in the other one the coupling constant is renormalized with the number of oscillators with ...

متن کامل

6 M ar 2 00 8 epl draft Random Sierpinski network with scale - free small - world and mod - ular structure

Incompatibility graphs (networks) are abundant in the real world. In this paper, we define a stochastic Sierpinski gasket, on the basis of which we construct a random incompatibility network—random Sierpinski network (RSN). We investigate analytically or numerically the statistical characteristics of RSN. The obtained results reveal that the properties of RSN is particularly rich, it is simulta...

متن کامل

Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.

A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will stud...

متن کامل

Self-similarity, small-world, scale-free scaling, disassortativity, and robustness in hierarchical lattices

In this paper, firstly, we study analytically the topological features of a family of hierarchical lattices (HLs) from the view point of complex networks. We derive some basic properties of HLs controlled by a parameter q: scale-free degree distribution with exponent γ = 2+ ln 2 ln q , null clustering coefficient, power-law behavior of grid coefficient, exponential growth of average path length...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009